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Preface

A common problem in estimating spares 7equirements for complex

systems is accurately forecasting failure rates. While a point estimate

of system reliability can normally be obtained, it is relatively

meaningless without some confidence limit on it. The problem is

compounded in highly reliable systems that have some period of failure

free life before entering their failure period. Considerable work has

been done on reliability estimation over the last twenty years at the Air

Force Institute of Technology. This thesis is a continuation of many

efforts to provide a flexible, robust method of estimating confidence

limits. In an attempt to make the methods and procedures developed as

useful as possible to future readers, I have included several

illustrations, an example of how to use the procedures, and the computer

printouts of the programs used.

Thanks are due to Dr. Albert H. Moore for his assistance in

selecting this topic and his guidance throughout. Also, the frequent

support of the AFIT and ASD computer personnel in extending my account

and providing timely advice on methods to improve turn-around time is

much appreciated.

Murray R. MacDonald
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Abstract

A Double Monte Carlo method of obtaining confidence limits for

complex systems based on component failure data assuming a three

parameter Weibull distribution was developed. Three new parameter

estimation routines were developed and compared with the l{arter-Moore

three parameter maximum likelihood routine for use with the Monte Carlo

method. The sensitivity of the method to system reliability, sample

size, and number of points in the component reliability distributions was

assessed. An approximate method of calculating and correcting for

parameter estimation bias was developed and illustrated. The Double

Monte Carlo method appears to be effective at system reliabilities from

74% to 96% with componenent failure sample sizes as small as five with

the Linear Least Squares parameter estimation routine developed.
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A MONTE CARLO TECHNIQUE SUITABLE FOR OBTAINING COMPLEX SPACE SYSTEM

RELIABILITY CONFIDENCE LIMITS FROM COMPONENT TEST DATA

WITH THREE UNKNOWN PARAMETERS

I Introduction

Problem Statement

Accurate estimation of complex system reliability is important for

operational planning and system replacement scheduling. Estimation of

system reliability for Space systems is particularly important in that

replacements or repairs are generally difficult to make. Little system

reliability data exists due to the small numbers of each type of system

and the varying complexity of the systems. Component reliability

continues to improve and longer missions arc planned and conducted (Ref

32) so empirical estimation of system reliability is impractical, thus

necessitating use of an analytic model to estimate system reliability.

Most models simply assume a constant failure rate (exponential

distribution) for the components (Ref 19), but these models have proved

to be very conservative which results in larger system purchases than

required (Ref 2). Empirical data was added to the models in an effort to

improve their accuracy and the effect of mission controller selection of

alternate system modes (work-arounds) has also been considered (Ref 25)

to produce reliability estimates which are not grossly in error.

Space system failures have tended to occur in one of two separate

periods: early system failure caused by undetected defects, and wearout

or failures caused by random mishaps later in the system life (Ref 2:6).

Accurately predicting early failures caused by defects is a function of

12



quality control. With improving design and quality control, complex

spacecraft with failure modes dominated by wearout can be manufactured

(Ref 2:7), and the effect of a few defects can be nullified by

work-arounds. The estimate of increasing importanne is the effect of

long term failures. To accurately model these effects, the system

component failure distributions must include location parameters.

Incorporating location parameters into models which use an

exponential distribution assumption would account for the necessary

period before the long term failure period was entered. Unfortunately,

the exponential distribution is not robust in that departures from the

distribution can result in large errors (Ref 11). The primary use of the

exponential distribution in system reliability estimates would appear to

be for a system which is composed of many components which are changed on

failure (Ref 14:235,237). This is not the case for space systems, so an

alternate set of assumptions which can more accurately model the failure

distributions encountered must be used.

A point estimate of system reliability is r latively easy to obtain

but is of itself of little value without confidence bounds. For example,

a system reliability estimate of 0.99 with a 90% lower bound of 0.95 is

considerably different than a system reliability estimate of 0.99 with a

90% lower bound of 0.50. The system reliability estimates required are a

point estimate and a lower limit at some pre-selected confidence level.

The problem is to develop a robust model that can account for some

period of guaranteed life before entering the wearout period for

reliability confidence interval estimates of complex systems. The model

must be able to incorporate many different types of components with

different failure modes and guaranteed lives.

3 2
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heview of Applicable Literature

Over the last twenty years, a considerable amount of research has

been done into estimating component parameters from failure data and

system reliability from component data. Orkand in 1960 (Ref 24:18)

suggested a Monte Carlo method for the estimation of the lower confidence

limit on the reliability of a complex network of components. He

suggested this method as a general solution procedure and provided a more

detailed solution for the case where the sample data for each component

are in binomial form. Rosenblatt in 1962 discussed the problem of

determining confidence limits for the reliability of complex systems.

She suggested that estimation using simulation was ". . the simplest

and most generally applicable procedure for estimating R through F

(xl,...,Xk)..." (Ref 29;119) and used a binomial theoretical treatment of

the problem.

In 1963, Quayle (Ref 27) summarized the applicable reliability

theory and provided some preliminary work on parameter estimation with

his method of using order statistics to estimate the scale parameter of

the Weibull probability density function. The same year Bernhoff (Ref 3)

showed that adding component confidence limits to obtain system

confidence limits was erroneous and that no single system parameter was

appropriate when the components have different distributions. He

determined that "The analytical solution becomes impractical when the

system reliability estimator is the function of two or more dissimilar

mathematical forms and mathematical simulation must be used" (Ref 3:3).

For confidence limits he generated and used a step cumulative

distribution function.

Levy in 1964 (Ref 16) used a Monte Carlo Technique to obtain system

I3



reliability confidence limits from component failure test data assuming

that the components' failure distributions were two-parameter Veibull

(location parameter =0). He established P step cumulative distribution

function to obtain system lower reliability confidence limits. His work

was later consolidated and published (Ref 17). Moore in 1965 (Ref 23)

extended the concept of using the Monte Carlo technique for obtaining

system reliability confidence limits from component data for cases where

the mathematical model for the underlying failure distributions is known,

component test data exists to estimate the parameters, and the

distribution of the estimators of the parameters is unknown. The basic

method consisted of obtaining a sample distribution of reliabilities from

which an approximate confidence interval, or limit, can be obtained at

any level of confidence.

In 1967 Hahn and Shapiro in their text (Ref 10:Chap 7) discussed the

problem of estimating confidence intervals for complex systems. The

methods developed were the use of the Central Limit Theorem for series

systems with a large number of components, the generation of system

moments, and the Monte Carlo method. They favor the generation of system

moments for relatively simple systems but prefer the Monte Carlo method

for "... highly complex situations for which the method of generation of

system moments becomes too difficult." (Ref 8:246)

In 1972 Lannon (Ref 15) used the Monte Carlo method to approximate

system reliability confidence limits assuming the components had failures

characterized by two-parameter Weibull distributions (location

parameter0O). In 1973 Boardman and Kendall (Ref 6) developed a method of

parameter estimation for a binomial mixture of two single parameter

exponential distributions under the assumption of two possible causes of

4

tt



failure, each with a single parameter exponential distribution. Their

method may have some application to the problem of estimating spacecraft

reliability but suffers from the assumption of location parameters-0, the

lack of robustness of the exponential distribution, and the simplicity of

the model.

In 1976 Gatliffe (Ref 9i) extended the use of the Log-gamma procedure

for estimating sytitem reliability from series only arrangements to

series-parallel arrangements. His method does not require either

assumptions about failure distribution of any component, or equal sample

sizes. His results are good for highly reliable systems but the accuracy

is unstable from configuration to configuration. His system also can be

very conservative in that it generates artificial failures when no

failures were observed.

Bilikam and Moore provided two practical illustrations of the use of

the Monte Carlo method to estimate mission reliability in 1977 and 1978.

In the first (Ref 4) they used time-grouped mission equipment failure

data where the exact failure times were unknown although the equipment

was known to have failed during a mission of known length. En the second

(Ref 5) they used known failure times of one type of aircraft engine

component. Also in 1978, Snead (Ref 30) developed a univariate method of

using the asymptotically normal property of R(t) with a Monte Carlo

technique to estimate system reliability confidence limits.

* In 1979 Putz (Ref 26) used the univariate Monte Carlo method to

estimate lover confidence limits of system reliability based on component

* test data. He assessed the sensitivity of the method to the asymtotic

normality assumptions and estimated the minimum sample size required for

this method. His method is the most effective when component and system
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reliabilities are low (less than 0.9) and sample sizes of fifty or more

are available. When the component reliabilties are high and/or the

sample size is low, the distribution of R(t) is no longer nearly normal

which can result in significant errors.

In 1979 Rice (Ref 2b) assumed the number of component failures was

binomially distributed. Using the asymtotic normality property of the

binomial distribution (n20), he developed a Monte Carlo m( hod of

estimating lower confidence limits on system reliability with component

failure data input. In the cases where no failures were observed he used

the Gatliffe method of generating artificial failures. Also in 1979,

Antoon (Ref 1) used Monte Carlo analysis to find empirically the standard

deviation of reliability of a system whose underlying component

distributions were two-parameter Weibull (location parameter=O). He

developed, by curve fitting, an equation for computing the standard

deviation in terms of reliability and sample size.

In 1980, Johnston (Ref 13) used a Modified Double Monte Carlo

procedure to estimate system reliability from component data where the

compon nt failure distributions were characterized by the two-parameter

Weibull (location parameter=O). He used the bias tables published by

Thoman, Bain and Antle (Ref 31) to correct his estimates of reliability

and obtained reasonable results, although the results are difficult to

evaluate fully since different system configurations with different

reliabilities were used. Also in 1980 Moore, Harter, and Snead (Ref 21)

compared three Monte Carlo techniques for obtaining system reliability

confidence limits; the bivariate, the univariate, and the Double Monte

Carlo. Their conclusion was that the bivariate tended to be conservative

and the univariate asymtotic optimistic with the Double Monte Carlo in

6
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between. Depuy (Ref 7) compared the accuracy of two Monte Carlo

simulation techniques of finding lower system reliability confidence

limits: the bivariate and the univariate. She found the bivariate

method the most accurate if the true system reliability is below 0.95,

and the univariate most accurate if the true system reliability is

greater than about 0.95 and the component data sample size is less thei

twenty.

Finally, in his review of reliability growth (Ref 33), Vonloh

discusses the use of the Monte Carlo method in system reliability growth

prediction models. The entire subject area of reliability growth is

applicable to new developing technology and the flexibility of th Monte

Carlo method in general makes it useful for estimation of the reliability

of systems whose parameters may be changing.

Model Selection

Two methods of system reliability determination warrant further

discussion: the method of moments and the Monte Carlo method. The

method of moments can be the most economical aproach. It also allows the

analysis of the relative importance of each component variable by

examination and does not require any assumptions about the underlying

component distributions. On the other hand, the accuracy of the results

is not always consistent and cannot be readily analyzed. Also, the

generation of system moments soon becomes unworkable with increasing

system complexity (Ref 10:246,247).

The Monte Carlo method requires that an assumption regarding the

component failure distribution be made. Also, it does not allow for

detection of dominant components. Since the method estimates overall

7



system performance, a change in any of the components requires that the

entire system be re-analyzed. The method also requires a considerable

amount of computer time - the exact amount being dependent on the system

and the assumptions in the model. On the positive side, the Monte Carlo

method has proven useful in a wide variety of applications. It has been

extensively used in developing system reliability confidence limits,

particularly for a two-parameter Weibull or a binomial distribution. It

is easy to use and, if the Double Monte Carlo method is used (Ref 20)

does not require any assumptions other than those of the component

reliability distributions. Therefore, for this problem, the Double Monte

Carlo method was selected as the most suitable for developing the

required model.

Underlying Failure Distribution Selection

In using the Monte Carlo method, it is necessary to select a

suitable component failure distribution. The distribution should allow

for the possibility of a location parameter greater than zero and a

non-symmetrical shape in order to allow fitting of the distribution to

the data available or, as Easterling wrote "Thus the task facing the

statistician is more often one of model fitting than of parameter

estimation" (Ref 8). This is because a given set of data may not clearly

resolve the appropriate distribution.

Exponential. The exponential distribution is widely used and is

well analyzed. However, even if a location parameter were added it would

still not have the required flexibility in shape.

Gamma. The gamma distribution has been used in fatigue and wearout

studies. It can assume a variety of forms which could be fitted to aI considerable variation on data.

8



Normal. The nornal density also is commonly used. It can

accomodate a period of near-guaranteed life and can assume different

scales depending on the mean and variance. However, its symmetrical

shape limits its application.

Log Normal. Like the normal density the log normal can accommodate

a period of near-guaranteed life and can assume different scales.

However, its shape is limited to a positively-skewed normal curve.

Weibull. The three-parameter Weibull can accomodate any positive

location parameter and a wide range of shapes and scale depending on the

respective parameters. The scale parameter determines the spread about

the mean, the shape parameter determines the failure rate - whether

increasing, decreasing, or constant, and the location parameter

determines the point beyond which failure can occur. The Weibull density

function has shapes that are similar to the Gamma or the lognormal -

assuming appropriate Weibull parameters. If the shape parameter is 1,

the Weibull becomes an exponential function; a shape parameter of about

3.7 yields an excellent approximation to the normal function and a shape

parameter of 2 can approximate Beta distributions. It has also been

shown valid for a wide variety of actual situations (Ref 34) and has the

necessary flexibility to fit any foreseeable set of failure data.

Therefore, the three-parameter Weibull distribution was selected for this

model.

Objectives

The objectives of this thesis are:

1. to develop a model to estimate complex system lower

reliability confidence limits;

9



2. to estimate the minimum practical sample size, and

3. to assess the sensitivity of the Double Monte Carlo method

to the number of points in the sample distributions of reliability.

Assumptions

It is assumed that:

1. The underlying component failure distributions can be

modeled by three-parameter Weibull distributions;

2. Components fail independently; that is, there are no

secondary failures;

3. A mathematical relationship between component reliabilities

and system reliabilities can be established;

4. The International Mathematics and Statistics Library (IMSL)

subroutines GGUBS and UGWIB provide valid random variables; and

5. The user has a basic knowledge of reliability theory, Monte

Carlo methods, and FORTRAN 77.

Approach

Existing methods of estimating parameters from failure data were

examined and the most suitable method was selected for inclusion in the

model. The failure data was generated artificially to represent true

component failures from three-parameter Weibull distributions with

different parameters. A single complex model was developed and the true

reliability calculated analytically to use as a test of the model

results. The model was tested at system reliabilities of about 75%, 85%,

and 95% with all of the component reliabilities roughly matched to

simulate a balanced system. At each reliability level component failure

sample sizes ranging from five to fifty were modeled to assess the effect

10
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of different sample sizes on the model accuracy.

The Double Monte Carlo method was used to generate the estimates of

system reliability confidence intervals. When initial results indicated

that the method of parameter estimation used was inadequate for a three

parameter model, three new methods were developed, evaluated, and the

best selected for use. The evaluation of the overall method consists of

comparing the percent of times the X percent confidence interval captures

the true reliability. For example, at the 80% confidence level, 80% of

the time the confidence level should be below the true reliability.

Finally, a sample illustration of the method was provided for practical

guidance.

11
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11 Supporting Methods Development

Method of Maximum Likelihood

The assumption of a component failure distribution necessary for the

Monte Carlo method requires that the distribution parameters for each

component be estimated from its failure data. The method of maximum

likelihood has been widely accepted as one of the most reliable methods

of estimating distribution parameters. The maximum likelihood estimators

are consistent, asymptotically normal and asymptotically efficient for

large samples under most conditions (Ref 35:89).

The probability density function of a random variable T having a

Weibull distribution with location parameter c, scale parameter e, and

shape parameter k is
k t-c t-c

f(t;c,e,k) = k (- exp[ ( o<c<t, e>o, k>o

To establish the maximum likelihood values of the parameters c, e,

and k it is necessary to formulate the likelihood function and solve for

the values of the parameters that maximize the function. Let T1 , T2,

•, Tn be the observed values in a random sample of size n. Then the

likelihood function is

L(t,c,e,k) =  n~ f(ti; ce,k) ti>c

Now if the ti are treated as fixed constants, then the likelihood

function may be treated as a function of the three unknown parameters.

Substituting in the value of f(ti; c, e, k) the likelihood function

becomes <t

L(c,e,k) = 7 () exp[-(t-c) 0>o

kao

The natural logarithm of the likelihood function, ln L, is easier to

work with and does not result in any loss of generality since the maximum

12
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of ln L and the maximum of L will occur at the same values of c, e, and

k. The first partial derivatives of in L with respect to each of the

variables (the three unknown parameters) are set equal to zero and solved

simultaneously to yield the maximum likelihood values of the parameters.

The analytic solution of this system of partial differential equations is

intractable and so requires an iterative computer routine. A commonly

used routine which has proven satisfactory for similar applications is

the flarter-Moore method of false position (Ref 12). This routine

estimates the maximum likelihood parameters based on the first m order

statistics of a sample of size n with r censored from below. The

formulation of the natural logarithm of the likelihood function used is

ln(ij) -ln(n!) - ln((n-m)!) - ln(r!) + (m-r)(ln(k)-k ln(e))

m m
+ (k-i) Jr 41 ln(t i-c) -ir+1 [(ti-C)/O]k

-(n-in) [(tm,,c)/ejk + rin 1i-exp [-(tr+1 C)kek]1

This formulation leads to the partial differential equations

gin_ L _____ m k k-.. k(n-m)(tm-c) k

0 0 ki Zr+I (1iC 0 + 6+

k k k /k+1 k k
-kr(t r- c) x exp[-(t rilc) /e 1b/ (I-exp[-(t r-c) /0 I

anL (m-r)(1/k-lne) +. ln(t.-c) E [(x.-c)/O]k ln[(x.-c/0]
-k ir+1 1 im-r+i[ 1

k k
(n-m)[(t -c)Ie] In[(t -c)/e] + r(t - C) ln[(t -W)eImmr+1 r+1

exp(-Ut r1- /61 k1+ & fl-exp[-(t r+l-c) k/e k

aln L -'k (-c-i+kk m t.c k-1
ac -k~wi 1t I C +k i Er+1 (,i-C

-k k-1 k-i
+(n-m)ke (t -C) -kr(t -C) x

m r+1

expI-(t r+1-C) k, e k e@ {i-exp[-(t r+I-c) k/e k~

The routine which solves these equations is listed in Appendix B.

13
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Median Rank Values

The Double Monte Carlo method builds estimated reliability

distribution functions from which the appropriate confidence limits are

selected. This requires that the randomly generated reliabilities be

ordered and ranked. Several methods of rank plotting are available, with

the median rank method the most commonly used because of the assumption

that the rank distributions are skewed. The median rank is actually an

incomplete beta ratio which cannot be readily calculated. However, the

approximation to the median rank value given by

n-.O.4

has an insignificant error for the large sample sizes (n > 50) used in

the reliability distribution functions. An illustration of the median

rank plotting against reliability with linear interpolation between

points as used in this development is provided in Fig 1.

*1 R(t)

Figure 1. Median Ranks

Random Variable Generationj The IMSL routine GGWIB was used to generate single parameter (k)

14



Weibull variables which were transformed to three-parameter Weibull

variables by subroutine WEIBL. The £MSL routine uses a c.d.f.

F(t)fl-exp [-tk] and inverts this to the reliability function to obtain

the relationship t=[-ln (u)] 1/k where u is a uniform pseudo-random

variable.

For the three-parameter distribution, the reliability function is

R(t) = exp[- (t-c)k]

Letting u=R(t) and taking the logarithm of both sides gives

in u = k

(-In u)1/k = t-c
9

t = e(-In u) 1/k + c

Double Monte Carlo Method

The Double Monte Carlo method does not require any asymtotic

assumptions and can be used with any component failure data providing

that an assumption is made regarding the underlying failure distribution.

For the purpose of developing and proving the model, the "real" failure

data was generated using the "true" parameter values for each component.

These true parameter values also allowed the analytical calculation of

the true reliability which was used as a test of the results. The Double

Monte Carlo method initially used consisted of the following steps.

1. Generate the true component failure data.

2. From the true component failure data, estimate the three

parameters of each of the component reliability functions.

3. Generate a simulated sample of component failures, using the

15
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estimated paramneters, with the same number of observations as the

test dat&.

4. From these simulated failures, estimate the three parameters

of each of the component reliability functions.

5. Using the second estimate of the parameters, calculate the

reliability of each component, R1 j.

6. Repeat steps 3-5 until the required underlying sample size is

obtained (50, 75 or 150).

7. Establish sample estimated reliability distribution functions

for each component by ordering the Rij for each component and

matching each Rij with the appropriate median rank. The first and

last order statistic, associated with the median ranks 0 and 1

respectively, are approximated using linear extrapolation off the

two nearest order statistics.

8. Randomly select a reliability for each component from its

reliability distribution function using linear interpolation between

points and compute the system estimated reliability Re,. Repeat

until 600 estimates of system reliability are obtained.

9. Order the R., against median ranks and determine the 99, 115, 90,

80, 70, 60, and 50 percent lower confidence points using linear

interpolation between points on the system sample distribution of

reliability estimates. Note if the true reliability is greater than

9 or equal to each of these confidence points.

* 10. Steps 1-9 provide one estimate of the system reliability

confidence limits. To validate the method, these steps are repeated

1000 times. The X percent confidence limit should be less than or

equal to the real system reliability X percent of the time.



Appendix A contains the computer program listing for the Double

Monte Carlo method used. In actual practice only one true set of data

would be a ilable; step 9 would consist of printing out the desired

confidence levels and step 10 would not be applicable.

17
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III Method Development

System Configuration and Reliability

The Monte Carlo method of determining approximate system reliability

confidence limits was selected as the most suitable for this development

because of its advantages in handling complex systems. Of interest is

the accuracy of the method for different reliability levels and different

sample sizes for a complex system. Therefore, only one system

configuration was used in order to be able to compare the results at the

different reliability levels and sample failure levels tested. The

system configuration selected is illustrated in Fig 2.

I I

Fig 2. System Configurationi

For the Weibull distribution, the component reliabilities are

From the system illustration, the system reliability R8 is

s= H1 (1-FBFC) = R1 (1-(1-RB)(-Rc)) H1E (RB R - RBRC)

RB =RAR4

A = (1-F2F3) = -2 -3 -

18
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RC = R5 + R6 - R5R6

Rs = RI (R2 + R3 - R2 R3 ) H4 1 + (R5 + R6- R5R6 ) -

[(R2 + R3 - H2 R3 ) R4 ] (N5 + R6 - R5R6
) 1

Parameters and Reliabilities Selected

As a matter of convenience and to maintain continuity with previous

methods, a time of 100 units (T = 100) was used throughout. The same

location parameters were used with the scale and shape parameters changed

to provide balanced component reliabilities and a good range of parameter

selections for the test. The parameters and reliabilities used are

listed in Table I.

Estimates Generated

The parameter estimates generated by the method of maximum

likelihood are biased, and the reliability estimates derived from these

estimated parameters will be biased. Thoman, Bain, and Antle (Ref 31)

empirically determined and tabled the bias in i(t) for a two-parameter

Weibull distribution for a range of .50 1 R(t) . .98 and sample sizes

from 8 to 100. For sample sizes greater than 15, the biases were only

third decimal place values. Moore, Harter, and Antoon (Ref 22) assess

the reliability estimate for a two-parameter Weibull as being very nearly

normal and very nearly unbiased for sample sizes greater than about 20.

The bias in f(t) for a three-parameter Weibull distribution has not been

tabulated but, from the work done on the two-parameter Weibull

distribution, can be expected to be small for larger sample sizes 0) 30).

The results of this method include any bias present, and should provide

some feel for the magnitude of the bias in the parameter estimation

routine used.
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TABLE I

Parameters and Reliabilities

1 2 3 4 5 6

ci (Location) 10 0 15 30 25 50
ki (Shape) 2.6 1.1 2.0 2.5 1.7 1.4
ei (Scale) 140 400 180 120 180 150
Ri  .748 .804 .800 .771 .798 .807
R= 0.741

ci 10 0 15 30 25 50
k i  2.3 0.5 2.0 3.5 1.2 2.0
8i  200 470 180 120 250 150
Ri  .853 .748 .800 .859 .790 .895
Rs = 0.849

ci  10 0 15 30 25 50
k i  2.9 2.1 2.3 3.0 2.7 2.0
ei  270 470 400 160 250 280
Ri  .960 .962 .972 .920 .962 .969
Rs = 0.959

Accuracy of Method

With Monte Carlo simulation, the larger the number of trials in the

simulation, the more precise the solution will be. The desired degree of

precision can be obtained by increasing the number of trials. The number

of trials required for a degree of precision, E, can be calculated at a

desired confidence level, I - , by considering the Monte Carlo as a

binomial problem where the estimate of interest is the proportion p of

systems above a certain level. The calculation of n depends on the value

of p actually found in the Monte Carlo simulation so a certain amount of

trial and error is required. However, for a conservative estimate the

largest n will be required for p = 0.5 which may be used to obtain an

20



upper bound on n. The normal approximation to the binomial can be used

for convenience with little error since the number of Monte Carlo trials

will generally be sufficiently large to ensure that np or n (l-p) are

greater than five. This approximation leads to the relation

n = p(1-p) z2

E2  1-12

for a two sided interval where Z-,_/ 2 is the (1-./2)100 percent point of

the standard normal distribution.

If the error is required, it can be determined by the relation

E zn 1--/2

For example, if 1000 Monte Carlo trials result in 900 points within some
900

specified tolerance, p = 900- = 0.9 and, at the 95% confidence level

E = ((.9) (.1)) 1.96 = 0.0186

1000

While the accuracy of the Monte Carlo procedure can be readily

estimated, the model accuracy is more dependent on the accuracy with

which the component parameters can be estimated from failure data. An

error in parameter estimation is compounded by the use of these estimated

parameters to generate random samples from which the second estimate of

parameters is made. Therefore, the overall accuracy of the method can

only be estimated from the results tested against the known point. An

underlying assumption in developing the model is that the results can be

extended to other similar complex systems.
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IV Preliminary Results and Method Development

Preliminary Results

The Double Monte Carlo program was developed and run for a single

estimate of system reliability (in step 10 only one estimate obtained) at

Rs = .95 with 10 failures and 75 points in the sample distributions of

component reliability estimates. This single estimate required 677

seconds of CDC Lber Model 74 (CSB System) CPU time. When extrapolated

to 1000 estimates I)er run and 15 runs required (5 sample sizes and 3

reliabilities), this results in an estimate of over 2820 hours (4 months)

of CPU time. The expensive part of the method was step Four:

calculating the second maxinaum likelihood estimators of the parameters

from the simulated failures. In addition to being time consuming, this

step produced estimates of the location parameter, c, that were larger

than the test time (T = 100) for 202 of the 450 (45%) parameter

estimations from the simulated failure data. These large estimates of c

were not surprising in light of the high component reliabilities and the

small sample size but did indicate a potential problem with the parameter

estimation method under these circumstances.

Parameter Estimation Development

These initial results showed that a much faster and more reliable

method of parameter estimation had to be obtained in order to reduce the

CPU time and get more reliable estimates of the location parameter c.

Because of the large number of parameter estimations required, the

overriding requirement was to greatly increase speed. Other work done on

parameter estimation was more concerned with accuracy (Ref 18), so the

other available routines were also slow. The first approach taken was to
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modify the maximum likelihood routine used. Initially the accuracy

tolerances were set at .0001 and the program could run for a maximum of

550 iterations. Trial and error with the method resulted in reducing the

maximum number of iterations to 300 and the accuracy tolerances to .01

without any significant degradation of results. This reduced the run

time to about 60% of its previous level. Since this was still far too

slow, modifying this procedure was abandoned and three new methods were

developed.

The first approach taken was to develop a computerized graphical

estimation technique using the ordered samples ti , i = 1, 2, ..., n, and

accept the parameters which gave the minimum error least squares fit.

The cumulative distribution function for the two-parameter Weibull,

F(t) 1-exp[- e)k] can be rearranged and the natural logarithm taken

twice to give the relationship

in (in(l_1)) = k In(t) - k in(e)

which, when rearranged, gives

ln(t) 1n(in( ln(e)

1 IThe substitution of Y = ln(t), m-, X=ln (in( 1-F(t)), and a = In(e)

provides the linear relationship Y = mX + a. The values of F(t) were

estimated by the use of median ranks. The value of k was estimated from

the first and last values on the abscissa and ordinate. Using the

estimate of k and F(t) as given constants, in(e) can be calculated by
In(e) = in(t) - in (In(_1

k 1-7(t

Since e is a constant for each set of data, the value of ln(e) is

constant for each ti which leads to the following:

n ie) nLlt )
Zin e z lnti - 1 in (in( I  )]
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II 1 n

n in(e) = Z" in(ti) - in (
nk 1 n n (t

in(e) = (in1 In(ti) - k in n-rI't))))/n

The value of ln(e) can be used to estimate In (ti) and these

estimated values compared to the actual values of in(ti ) observed for one

estimated linear relationship. If various values of c are subtracted

from the sample data, each new sample can be used to estimate k and e and

the parameters which provide the best fit to a linear relationship

accepted. The method allows for an estimate of c=t i by using t2 and n-1

instead of tj and n respectively wherever required. In this case, t1 is

effectively censored.

The step-by-step procedure for this method is as follows:

1. Generate the abscissa values, xi, from in (in( 1 )) using
l-F(t)1

median ranks as the plotting position of F(ti).

n

2. Calculate the E xi

3. In a loop ranging from J = 0 to 10 do the following:

a. set &j = (J) (0.1) (ti)

b. calculate the Yi by the relationship yi = ln(ti-cj)

n
c. calculate j, Yi

d. set k Xn-xl
J Yn-YI

e. calculate In (e) by ln(e) = (in - 1 i )

f. calculate the natural logarithm of the estimated failure

times, E(yi), by E(yi ) = x+ in(ej)

g. calculate the sum of squares of errors, SSEJ, by

n
SSE J-u (E(yi) -y,

)2

4. Determine the smallest SSEj and use cscj, k kj, ;-exp(in(ej))

The method of estimating k from the slope calculated with the
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extreme values could result in some degradation of the estimate if one

(or both) of the extreme values were outliers. Due to their long

separation, a considerable deviation would have to occur in one of the

extreme values of t before the effect could be expected to be serious.

However, to avoid any potential problem of this nature, or others pointed

out further on, it is only prudent to examine the data before entering it

into the computer for analysis. Because of the method of obtaining

linear relationships and checking them by best least squares fit, this

method will be referred to as the Linear Least Squares (L.L.S.) method of

parameter estimation. Appendix B contains the program for this method of

parameter estimation.

Since the L.L.S. method depends to some extent on the plotting

position used, various plotting positions were tested against several

parameter combinations similar to those selected for the Double Monte

Carlo procedure developed. The plotting positions tested were:

1. the mean, j/(n+l);

2. median, (j-.3)/(n+.4);

3. (j-.375)/(n+.25);

4. midpoint, (j-.5)/n; and

5. the mode, (j-1)/(n-1).

The median rank method was selected since it gave consistently

closer estimates than the other two methods and also it has been

extensively used with good results.

Initial LLS Parameter Estimation Tests

Three manual plots of twelve data points each on Weibull paper were

made as a check for gross errors in the LLS method. For the first check,
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parameters of c=10, k=2.3 and e=120 were used to generate the data

points. The LLS routine provided estimates of 6-40.3, i=1.48, and ;-105.

The plot of the data points with Z=0 (e) and =40.3 (e) is provided in

Figure 3. The estimate selected by the program appears to plot

accurately on the Weibull chart. For the second and third checks, the

data points corrected for Z which the program selected were plotted and

the parameters estimated manually. In both of these cases, the data

plotted well and there was no appreciable difference in the plotted

parameter estimates. Parameters used to generate the data were c-30,

k=2.3, e=180, and c=30, k=3.1 and e=400. The respective parameter

estimates were c=81, k=1.35, e=158 and c=162, k=1.76, e=302. The plots

of the estimates are provided in Figures 4 and 5.

The LLS method of parameter estimation was then tested by the

following computerized procedure.

1. Generate random samples of size 5 to 50 from three-parameter

Weibull distributions with pre-selected parameters.

2. Calculate true system reliability from the pre-selected

parameters. T was arbitrarily set equal to 100 throughout.

3. Estimate the parameters from the sample data generated.

4. Calculate the estimated reliability, R(I00), from the estimated

parameters. If >100, set f(100)=I.

5. Three sets of parameters were each used to generate 5, 10, 20,

and 50 random samples for fifty parameter estimations at each of the

twelve combinations.

6. The mean square error between the estimated reliabilities and

the true reliability was calculated for each combination.

The true parameters used for the test, true reliabilities, number of
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time f(I00)=I, and mean square errors for reliability are listed in Table

II. A graphical illustration of the method from ten random samples is

provided in Figure 6. For this illustration, the samples were 105.3,

133.6, 196.4, 233.6, 360, 365, 372.1, 417.2, 428.5, and 566.8 from true

parameters of c=25, k=2.1, and e=280 with a true reliability of 0.939.

The parameters obtained from the 'inear least squares method fit the

estimated cumulative distribution function to the true cumulative

distribution function very well. However, the estimated parameter sets

generally had a 8 that was low, and a k and e that were high. For

example, with c=50, k=2 and e=280 and a sample size of ten, the average

estimated parameters were c=3.84, k=2.86 and e=331. Figure 7 illustrates

a cumulative distribution obtained from the true parameters and the

average estimated parameters. This tendency to underestimate c and

overestimate k and e was evident for all the initial sample size and

parameters tested.

In(t)

a

a - 0

.5- -e c=20

1

In (In(
1-F (t)

Fig 6. Illustration of Graphical Method
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As a further test of the L.L.S. method, a comparison of individual

parameter MSEs was made with the result3 of Miller (Ref 18) using the

parameters c=10, e=1 and k ranging from .5 to 4.0. The results with

these parameters were poor so the test was discontinued for further

analysis of the preliminary findings. An attempt was made to plot the

data points on Weibull paper but this proved infeasible. With the value

of c extremely high compared to e, all of the points effectively plotted

together. Any least squares errors from the linear relationship under

these conditions becomes rather meaningless. When the data is run on a

computer program, the true best estimate was close to the first order

statistic, but because of the clustering of data points with c close to

0, the computer would often select a low value of c with a resulting high

value of e. Table III is an example of the data points evaluated on one

run of the L.L.S. program. The points are values of failure times (t)

minus c over a range in c from c=O to c=t(1) in increments of 1/10 of the

first order statistic, t(1). For this example, the following values

applied: sample size = 12

c = 10

k =2

e =1

MSE c = 62.9

MSE k = 207

MSE e = 66
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TABLE IlI

Example of Data for L.L.S. Test

c=O 10.34 10.46 10.56 10.59 10.67 10.86
10.98 11.27 11.29 11.44 11.52 12.56

c=.I t(i) 9.51 9.43 9.52 9.56 9.63 9.82

9.95 10.23 10.26 10.41 10.48 11.53

c=.2 t(i) 8.27 8.39 8.49 8.52 8.60 8.79

8.91 9.20 9.22 9.38 9.45 10.49

c=.3 t() 7.24 7.36 7.45 7.49 7.56 7.75
7.88 8.16 8.19 8.34 8.41 9.46

c=.4 t() 6.20 6.32 6.42 6.45 6.53 6.72

6.84 7.13 7.15 7.31 7.38 8.43

c=.5 t() 5.17 5.29 5.38 5.42 5.49 5.68

5.81 6.10 6.12 6.27 6.34 7.39

c=.6 t(1) 4.13 4.25 4.35 4.38 4.46 4.65

4.77 5.06 5.09 5.24 5.31 6.36

c=.7 t() 3.10 3.22 3.32 3.35 3.43 3.62

3.74 4.03 4.05 4.20 4.27 5.32

c=.8 t(i) 2.06 2.18 2.28 2.31 2.39 2.58

2.70 2.99 3.02 3.17 3.24 4.29

c=.9 t() 1.03 1.15 1.25 1.28 1.36 1.55
1.67 1.96 1.98 2.13 2.21 3.25

c=t(1) .120 .216 .250 .326 .517
.640 .928 .952 1.10 1.17 2.22

The second method developed was actually derived from the L.L.S.

method. In order to avoid the problems caused by a large c relative to

e, c was estimated from a linear extrapolation of the first two order

statistics. This eliminated the time consuming process of selecting the

best fit to a 1inear relationship, so k was estimated by the average

slope between order statistics. e was estimated as before using the

values of c, k, and the order statistics. This modified L.L.S. method
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proved to be extremely fast in the parameter estimation comparison tests

described later. The computer routine for this modified L.L.S.

(M.L.L.S.) is included in Appendix B.

The third new method of parameter estimation developed used the same

procedure of extrapolating from the first two order statistics to

estimate c. Once c is known, k and e can be quickly estimated by maximum

likelihood. These estimators of k and e are:
k in(xi)J/Exk

Sn/x([ni i xik ln(xi)/l xik) - i'ln(x)

= ( xik)/n]1/k

An iterative routine was used to find k where xi=ti-c. The estimate

of k was then used directly to estimate e. This method is referred to as

the Modified Maximum Likelihood (M.M.L.) method. The computer routine

for the M.M.L. method is included in Appendix B. Theoretical development

of these estimators of k and a is included in Appendix C.

Parameter Estimation Tests

The modified L.L.S. method and the M.M.L. were tested for individual

parameter MSEs using c10, 9=1, and k from 0.5 to 4.0. The results of

these tests, listed in Table IV, are comparable to those obtained by

Miller (Ref 18) for these parameter selections. However, for this

project the accuracies of estimation of the parameters of more widely

spread distributions were required. Therefore, the component parameters

previously selected for an 85% system reliability were used to test the

L.L.S., the modified L.L.S., the L.L.S. using an average slope for k

instead of just the extreme values, and the M.M.L. Sample sizes of 5,

10, 20, and 50 were selected to provide a wide range without an excessive

number of points. All of the above tests consisted of calculating the
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TABLE IV

Parameter Estimation MSEs for c-10, e1l

Sample Size

4 8 12 16 20

c M.L.L.S. .188 .010 .002 .001 .000
M.M.L. .188 .010 .002 .001 .000

k M.L.L.S. .335 .058 .031 .017 .012
M.M.L. .828 .094 .037 .021 .014

E) M.L.L.S. 4.40 1.05 .542 .360 .264
M.M.L. 3.82_ .963 .622 .432 .314

k =0.5

Sample Size

4 8 12 16 20

c M.L.L.S. .101 .027 .008 .006 .004
M.M.L. .101 .028 .011 .007 .004

k M.L.L.S. .344 .153 .082 .069 .052
M.M.L. 1.01 .308 .117 .070 .053

e) M.L.L.S. .440 .175 .137 .080 .064
M.M.L. .415 .163 .102 .084 .061

k -1 .0

Sample Size

4 8 12 16 20

c M.LL.S. 156 .86 .09_.04_.03

c M..LS. .156 .086 .059 .044 .036

k M.L.L.S. .759 .668 .582 .472 .414
M.M.L. .869 .695 .438 .350 .299

8 M.L.L.S. .218 .139 .104 .079 .068
M.M.L. .228 .137 .093 .075 .064

k -2.0

I3
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Sample Size

4 a 12 16 20

c M.L.L.S. .241 .163 .128 .105 .920
M.M..L. .241 .163 .123 .106 .085

kc M.L.L.S. 2.69 2.33 2.08 1.80 1.65
M.M.L. 1.78 1.84 - 1.52 -- 1.35 1 1.20

E) M.L.L.S. .287 .210 .173 .141 f .125
M.M.L. .298 .209 .159 .134 .110

k = 3.0

Sample Size

4 6 12 16 20

c KLLS 31.238 .213 .171 .155

MML 31.237 .194 .172 .151
k M.L.L.S. 6.45 5.59 6.04 4.52 4.21

M... 43 4.35 3.88 3.56 3.2
9 MLLS 35.285 .265 .210 .191
M....375 .283 .231 .201 177

k =4.0
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TABLE V

Parameter Estimation MSEs for System Components

Sample Size

5 10 20 50

L.L.S. c 1031* 672* 713 625
k 1.12 .350 .135 .343
G 10,959* 6169 4155 1436

L.L.S. c 1046 744 640 625
Average k .976 .245 .078 .086
Slope e 11,084 5869* 2986* 2645
Modified c 4761 1589 529* 99*
L.L.S. k .285* .185* .076 .030

9 14,309 7104 3490 1176
M.M.L. c 4761 1589 529* 99*

k .630 .260 .069* .026*
9 14,084 6915 3352 1130*

c = 25 k = 1.2 9 = 250

Sample Size

5 10 20 50

L.L.S. c 508* 360* 1502 225*

k 2.62 .791 .611 .312
8 2204* 1285* 1138 427*

L.L.S. c 579 405 1447 225
Average k 2.28 .582* .430 .123*
Slope e 2338 1393 1123* 514

Modified c 4317 2225 1265* 423
L.L.S. k .763* .618 .409 .189

9 6317 3766 2280 820
M.M.L. c 4317 2225 1265* 423

k .801 .594 .307* .134
0 6500 3688 2154 761

c 15 k = 2 0 = 180
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Sample Size

5 10 20 50

L.L.S. c 1944* 610* 394 0*

k .405 .093 .031 .026
E 116,292 56,424 44,906 12,354

L.L.S. c 2280 802 351 OW

Average k .360 .074* .022* .009*
Slope f 116,892 51,187 35,276 8,318
Modified c 13,999 2,661 398 39.28
L.L.S. k .228* .096 .028 .011

e 120,366 50,150 23,266 8,152
M.M.L. c 13,999 2,661 398 39.28

k .538 .148 .031 .001
a 111,635* 48,043* 22,712* 8,002*

c = 0 k = .8 9 = 470

Sample Size

5 10 20 50

L.L.S. c 553* 320* 2.565 100*
k 3.08 .891 .921 .259
8 2087* 1125* 1779* 318

L.L.S. c 593 386 2502* 100
Average k 2.68 .667* .695 .102*
Slope e 2181 1290 1923 311*
Modified c 6339 3557 2205 839
L.L.S. k 1.16 .938 .670 .329

e 8568 5365 3460 1360
M.M.L. c 6339 3557 2205 839

k .995* .823 .501* .235
0 8812 5256 3281 1268

c = 10 k 2.3 0 = 200
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Sample Size

5 10 20 50

L.L.S. c 959* 906 2152 900*

k 11.4 4.30 3.83 2.47
e 1173* 1037* 1701* 944*

L.L.S. c 996 905* 2120 900
Average k 9.83 3.15 2.92 1.36
Slope e 1191 1068 1850 1013
Modified c 3722 2545 1880 980
L.L.S. k 4.25 3.47 2.81 1.67

e 4455 3184 2375 1231
M.M.L. c 3722 2572 1775* 1016

k 3.04* 2.80* 2.17* 1.32*
e 4536 3191 2191 1209

c = 30 k = 3.5 Q = 120

Sample Size

5 10 20 50

L.L.S. c 2428 2402 1385 2500

k 5.16 2.33 .923 2.25
9 3816* 3350 1125 2686

L.L.S. c 2425* 2322 1264 2500
Average k 4.43 1.63 .539 .959
Slope e 3931 3441 1083* 3343
Modified c 2998 1545 879 294*
L.L.S. k .763* .618 .409 .189

e 4387 2615 1583 570
M.M.L. c 2298 1536* 813* 309

k .801 .586* .319* .134*
E 4514 2571* 1429 542*

c = 50 k - 2.0 0 = 150
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MSEs based on Monte Carlo runs of 1000 repetitions. The results of the

estimations are listed in Table V with the best parameter estimate for

each sample size marked by an *. The computer CPU times required for

1000 runs of the four sample sizes for each method are listed in Table

VI.

TABLE VI
Parameter Test CPU Times

Method Time in Seconds

L.L.S. 76

Modified L.L.S. 22
L.L.S. Average Slope 90

M.M.L. 46

For comparison, a limited test of the Harter-Moore method of maximum

likelihood program was run. On the initial runs using 1000 Monte Carlo

repetitions, c-O, k=0.8, and e=470, only the runs for sample sizes 5 and

20 converged within 400 seconds so no further runs of 1000 repetitions

were made. The MSEs from these two runs are listed in Table VII.

TABLE VII
Harter-Moore Method - 1000 Repetitions

Sample Size MSE c XSE k XSE e

5 9013 .3978 73574
20 342 .025 17178

The number of repetition was decreased to 100 and a further test was

run using sample sizes of 5, 10, 20, and 50, c=25, k-1.2, and e-250. The

run at sample size 10 took 70 seconds which was proportional to the

length of time taken for the other runs. The MSEs of this test are listed

in Table VIII.
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TABLE VIII

Harter-Moore Method - 100 Repetitions

Sample Size

5 10 20 50

MSE c 4100 1238 553 156

MSE k 1.173 .329 .092 .033
MSE o 13533 5947 2735 959

c = 25 k = 1.2 e = 250

Discussion of Parameter Estimation Test

On the basis of the tests using c=10 and e=1 there is little

difference between the modified L.L.S. and the M.M.L. in accuracy, with

the modified L.L.S. being twice as fast. The estimates of c are the same

for both, with the occasional small differences attributable to different

random number seed values, since they use the same method of estimating

c. Both methods give reasonably good results and both are easy to

implement. The L.L.S. method does not produce satisfactory results with

a large c relative to 9. if the data is all clustered about one point,

then some method must be used to spread it for analysis such as

estimating a location parameter from the first two order statistics or

subtracting a large fraction of the first order statistic from all the

data.

Using data generated from more widely spread parameters, the L.L.S.

appears very good. It is more consistent in its estimates of c and the

estimate of k and e are as good or close to as good as the estimates of

any of the other methods. It even compares favorably with the well

established Harter-hoore method of three parameter maximum likelihood

estimation, particularly for small sample sizes. Of interest is that the
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L.L.S. generally provided better estimates than the L.L.S. modified to

use an average slope to estimate k. The M.M.L. method was more

consistent in its estimates of k than any of the other methods. A simple

count of the number of parameters most accurately estimated shows the

L.L.S. and the M.M.L. method tied at 25 each with the L.L.S. better at

estimating c and the M.M.L. better at estimating k. Neither parameter

can be considered the more critical because the importance of an error in

either depends on their magnitude and the relative magnitudes of c and e.

The selection of the best method depends on which produces the best

results in the Double Monte Carlo procedure. Given equivalent results,

the .astest method, M.M.L., would be preferable.

The results of the tests on parameter estimation methods indicate

strongly that extensive trials with a wide range of combinations of the

three parameters are necessary before any method can be selected as the

universal "best" or even as the best for a particular purpose. Until

this is done, it is advisable to visually inspect the data prior to any

furhter analysis. If the data appears well spread, the L.L.S. would be a

good choice of method to estimate the parameters. If the data appears to

be bunched in one small range, then the M.M.L. would likely be

preferable. Also, as for any other use of data, the data should be

checked for outliers before parameter estimation, and for goodness of fit

after parameter estimation.

The original systems reliability confidence level tests were

selected for sample sizes ranging from ten to one hundred. These sizes

were selected primarily because of the need for relatively large sample

sizes to obtain consistent results with the maximum likelihood method of

parameter estimation. However, the results obtained from the L.L.S. and
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the M.M.L. methods developed appear reasonable for all the sample sizes

tested: 5, 10, 20 and 50. Therefore, the project was modified to use

these sample sizes rather than the sample sizes originally picked.

To select the better method and to illustrate the use of the

program, 1000 Monte Carlo runs were divided into seven sets of "real"

data for testing at each of the system reliabilities 74%, 85%, and 96%.

Each of these sets used the real data once but generated simulated

failures and confidence limits 1000 times. Also checked on these runs

was the number of times the estimate of c was greater than the selected

mission time of 100 units. For the L.L.S., the largest percent of times

was about 5% compared to about 22% for the M.M.L. The overall results

for the L.L.S. method were much better than the results for the M.M.L.

method at 85% system reliability, so the M.M.L. method was not tested

further. For this project, the L.L.S. method of parameter estimation was

selected as the best. The average results of these test runs are listed

in Table IX.
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TABLE Iy

Parameter Estimation Selection Results

L.L.S. Method

R = 74%

Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

.297 .587 .662 .853 .975 1.0 1.0 5

.418 .499 .460 .622 .793 .899 .993 10

.360 .396 .443 .640 .885 .983 1.0 20

.345 .478 .653 .782 .851 .911 .995 50

R = 85%

Confidence Level Sample Size

.50 .60 . 70 .80 .90 .95 .99

.313 .428 .729 .904 .998 1.0 1.0 5

•445 .450 .473 .628 .850 .962 1.0 10
.280 .380 .441 .541 .589 .785 .978 20
.335 .598 .707 .804 .875 .975 1.0 50

R = 96%

Confidence Level Sample Size

E .50 .60 .70 .80 .90 .95 .99

.345 .490 .759 .977 1.0 1.0 1.0 5

449 .450 .456 .608 .948 .998 1.0 10
197 .249 .251 .268 .511 .765 .921 20
•_ 490 .608 .741 .843 .952 .997 1.0 50

M.M.L. Method

R 85%

Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

.300 .300 .300 .300 .354 .448 .635 5

.393 .448 .450 .450 .454 .518 .712 10

.287 .386 .533 .647 .647 .647 .739 20

.305 .496 .604 .745 .845 .852 .918 50
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V Assessment of Method

Results

The three-parameter Double Monte Carlo Method was run for 1000

repetitions at system reliabilities of 74%, 85%, and 96% with component

failure sample sizes of five, ten, twenty, and fifty. Initially,

seventy-five points were used for the component sample distributions of

reliability estimates to be compatible with previous work (Ref 13). The

results of these runs are listed in Table X. The 1000 repetitions of

each combination were divided into six runs of 150 and one run of 100 to

keep all required CPU times below 4000 seconds.

In order to check the sensitivity of the Double Monte Carlo method

to the number of points in the component sample distributions of

reliability estimates, the number of points was increased to 150 and the

method used for a system reliability of 85% with component failure sample

sizes of five, ten, and twenty. The results of these runs are listed in

Table XI.

Since increasing the number of points in the component sample

distributions of reliability estimates did not increase the accuracy of

the method, the number of points was decreased to fifty and the Double

Monte Carlo Method was checked at reliabilities of 74%, 85%, and 96% with

component failure sample sizes of five, ten, and twenty. The reduction

in the number of points from seventy-five to fifty resulted in a 1/3

reduction in the number of parameter estimations required. Since

parameter estimation takes nearly all of the computer CPU time for the

method,'this reduction in points also resulted in about a 1/3 reduction

in CPU time. This, combined with limiting the failure sample sizes to
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TABLE X

Double Monte Carlo Results: Distribution Size 75

R 74%
Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

.447 .550 .649 .740 .823 .874 .944 5

.475 .576 .674 .765 .855 .914 .966 10

.404 .519 .603 .689 .795 .877 .942 20

.488 .594 .695 .797 .907 .952 .979 50

R = 85%
Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

.420 .528 .642 .729 .817 .876 .940 5

.470 .578 .675 .757 .848 .910 .976 10

.362 .455 .522 .609 .715 .786 .856 20

.522 .628 .730 .842 .933 .967 .989 50

R = 96%

Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

.371 .501 .607 .714 .807 .872 .934 5

.578 .687 .786 .863 .935 .959 .989 10

.111 .150 .201 .290 .445 .570 .763 20

.566 .660 .767 .862 .948 .973 .992 50

TABLE XI

Double Monte Carlo Results: Distribution Size 150

R =85%
Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

.415 .522 .623 .730 .824 .879 .933 5
•495 .580 .690 .767 .856 .900 .958 10
•405 .486 .570 .663 .743 .802 .880 20
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20, allowed an increase to 500 repetitions within 4000 seconds of CPU

time. The results of these runs are listed in Table XII.

The results indicate that a sample size of twenty had the greatest

bias of the four sample sizes tested. This was particularly noticeable

at a system reliability of 96%. To obtain a better assessment of the

bias trend, the Double Monte Carlo method was run for a system

reliability of 9b% at sample sizes of fifteen, twenty-five, and thirty.

Fifty points were used for the sample distributions of reliabilities.

The results of these runs are combined with the results of the runs under

the same conditions except with failure sample sizes of five ten, and

twenty in Table XIII to show the trend in the system reliability bias.

Discussion of Results

Parameter Estimation. The accuracy of the Double Monte Carlo method

is dependent on the accuracy of parameter estimation. In order to be

practical for computerized operation, the parameter estimation method

used must also be fast. If the bias of the reliability estimates is

known, these estimates can be corrected for bias in the program.

Depending on the parameter estimation technique used, the bias is not

necessarily directly related to sample size. In the case of the L.L.S.

method, the routine is fast and reasonably accurate but has no particular

optimum properties; therefore, increasing sample size does not imply that

the bias will decrease. The results indicate that the system bias

becomes increasingly negative as the sample size increases from five to

twenty, then increases to slightly positive for a sample size of thirty

(Table XIII). Generally, the bias will not be known and it will prove

more practical to either establish a system bias or use the confidence
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TABLE XII

Double Monte Carlo Results: Distributioni Size 50

R =85%
Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

.452 .552 .627 .721 .817 .877 .9335

.464 .561 .655 .758 .855 .913 .958 10
.396 .481 .556 .659 .757 .816 .890 20

R =96%
Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

.425 .514 .611 .717 .806 .874 .924 5

.455 .571 .654 .754 .860 .914 .958 10

.138 .186 .241 .333 .482 .622 .783 20

R 74%

Confidence Level Sample Size

_.50 .60 .70 .80 .90 .95 .991

.475 .570 .648 .738 .825 .882 .932 5

.472 .563 .664 .755 .856 .912 .957 10

.461 .536 .628 .725 .831 .901 .942 j 20

TABLE XIII

Extended Double Monte Carlo Results: Distribution Size 50

R =96%
Confidence Level Sample Size

.50 .60 .70 .80 .90 .95 .99

.425 .514 .611 .717 .806 .874 .924 5

.453 .5711 .654 .754 .860 .914 .958 10

.284 .366 .460 .558 .669 .761 .851 15

.138 Itj6 .241 .333 .482 .622 .783 20

.558 .669 .749 .833 .928 .964 .988 25

.554 .635 .733 .822 .925 .962 .994 30
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level calculated that is closest to the desired level. Since with real

data the exact actual parameters will be unknown, the bias or levels used

must be for parameters close to the true parameters. This bias can be

calculated in the following manner:

1. From the available failure data, estimate the component

parameters as accurately as possible. Computer CPU time is not a

factor for this estimation.

2. Use these accurate estimates as true parameters and run a Double

Monte Carlo program to determine accuracy at the significance

level(s) desired. Empirically determine system bias by applying

bias to the system reliability estimates until the results are

accurate. This bias will be accurate for the estimated parameters

(step 1) and conditions and should be close for the true parameters.

3. Use the bias (from step 2) to calculate the appropriate

confidence limit(s).

Sample Distribution Size. Three sizes of sample distributions of

component reliability estimates (50, 75, 150) were tested with no

apparent difference in accuracy of results. The actual error caused by

using a small number of points cannot be directly calculated since the

distribution of the reliability estimates is not known exactly, but since

the error is the difference between the point on the true curve and the

point obtained by interpolation between an upper and lover point on the

true curve, the error will be much less than the spacing of the points

used for establishing the reliability distribution. The use of 50 points

gave good results in these trials and should provide the required

accuracy for any application.

General Method. The Double Monte Carlo method of confidence limit
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estimation is easy to implement and provides good consistent results for

the three-parameter Weibull. There is a requirement to remove bias for

maximum accuracy, but an estimate of bias is readily obtainable and easy

to apply. If the extra accuracy is not required, then considerable

computer time can be saved by using the biased estimators for approximate

confidence limits. Four parameter estimation methods are included in

Appendix B, but the method can be readily used with any parameter

estimation technique. In the results of this development, the estimation

of the location parameter appeared to be the most critical; therefore,

the data should be examined for a gross estimate of this parameter before

being input into any particular routine. A good approach would be to

ensure the data is well spread by removing some portion of the first

order statistic; then use the L.L.S. method of parameter estimation.
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VI Illustration of Method

In order to illustrate the method, the component parameters used for

the system reliability of 0.96 were used to generate one set of fifteen

data points for each component using a seed value of 17943. These data

are included in Appendix D. The L.L.S. method was used to estimate the

parameters from these data and a Double Monte Carlo program was run,

using these estimated parameters as true parameters, to calculate system

bias. As a matter of interest, the Harter-Moore three-parameter maximum

likelihood routine was also run to estimate the parameters from these

data points. The results of the parameter estimation routines are listed

in Table XIV.

A system bias of -0.005 was found to provide good results at the

high confidence limits of interest using seed values of 7539 and 96 for

the random number generation on two Double Monte Carlo runs of 500 each

for 1000 total runs. As a test of the accurac, of this bias, it was

applied to the system reliability of 1000 Double Monte Carlo runs using

the known true parameters from which the failure data were generated and

seed values of 135 and 17. Table XV lists the results of these two runs

and the original results not corrected for bias.
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TABLE XIV

Parameters for Demonstration

Component Method ck

I L.L.S. 69.5 2.42 226

True 10 2.9 270
H-M M.L. 118 1.70 173

2 L.L.S. 56.5 1.49 458
True 0 2.1 470
H-M M.L. 82.2 1.70 400

3 L.L.S. 82.5 2.36 333

True 15 2.3 400
H-M M.L. .0000027 3.63 422

4 L.L.S. 46 3.21 136

True 30 3.0 160

H-M M.L. .0000023 5.54 183

5 L.L.S. 80 2.80 206

True 25 2.7 250
H-M M.L. 152 1.59 123

6 L.L.S. 74.9 1.40 229

True 50 2.0 280
H-M M.L. 88 1.19 213

TABLE XV

Illustration Results

Confidence Level

.50 .60 .70 .80 .90 .95 .99

Bias Estimates .615 .704 .781 .849 .920 .949 .974

True Parameters with Bias .335 .413 .507 .604 .711 .795 .866
True Parameters without Bias .284 .366 .460 .558 .669 .761 .851
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Vii Concluding Material

Summary

A Double Monte Carlo method of estimating complex system

reliabilities at any confidence level was developed based on

three-parameter Weibull component failure distributions. In order to

implement the method, three fast, accurate parameter estimation routines

were developed and tested. The most effective routine, the L.L.S., was

selected and used in the Double Monte Carlo program. Good results were

obtained with componet failure sample sizes as low as five for

reliabilities from 74% to 96%. A step-by-step procedure with an

illustration of the method are provided.

Conclusions

It is concluded that:

1. the Double Monte Carlo method can be readily used to provide

reliability confidence limits for complex systems with

three-parameter Weibull failure distributions;

2. sample sizes as small as five can be used for system reliability

confidence limit estimation;

3. the Double Monte Carlo method is not adversely affected by

reducing the number of points in the sample distributions of

reliabilities to fifty; and

4. further development, full testing, and establishing biases for

three-parameter Weibull reliability estimations is needed.
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Recommendations

It is recommended that;

1. further development of computerized reliability estimation

routines be done; and

2. bias tables be developed for a fast, accurate three-parameter

Weibull reliability estimation routine.
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APPENDIX A. Double Monte Carlo Program

PR3GRAM SYSREL

C THIS PROGRAM PROVIDES CONFIDENCE LIMITS ON THE

C RELIABILITY OF A COMPLEX SYSTEM WHOSE COMPONENT RELIABILITIES

C CAN B" ESTIMATED. IT ASSUMES THAT THE UNDERLYING

C COMPONENT DISTRIBUTIONS ARE 3-PARAMETER WEIBULL
C AND USES THE DOUBLE MONTE-CARLO TECHNIQUE TO

C GENERATE RELIABILITY ESTIMATES. INTERNATIONAL
C MATHEMATICS AND STATISTICS LIBRARY (IMSL) ROUTIVES

C GGUBSvFOR GENERATING A UNIFORM (0,1) RANDOM VARIABLE,
C AND GGWIBg FOR GENERATING A ONE-PARAMETER WEIBULL

C RANDO VARIABLE, ARE USED. A LEAST SQUARES METHOD
C OF ESTIMATING THE THREE
C UNKNOWN PARAMETERS IS USED IN ROUTINE PARAM.

C THE POGRAM GENERATES ITS OWN REAL FAILURE DATA
C BUT CAN READILY BE MODIFIED TO USE ACTUAL FAILURE
C DATA BY DELETING THE APPROPRIATE SECTION.

C INPUTS:
C REPS: THE NUMBER OF TIMES SIMULATED RELIABILITIES ARE GENERATED

C T3 ESTABLISH A PELIABILITY DISTRIBUTION
C FUNCTION.
C C(I),K(I)THETA(I): THE PARAMETERS OF THE COMPONENr

C FAILURE OISTRIBUTIONS.

C TNFAIL= THE NUMBER OF FAILURES OF EACH COMPONENT
C

C OUTPUTS:
C FOR 50960,7O7SO90995,99% THE NUMBER
C OF TIMES THE LOWER LIMIT WAS LESS THAN

;C THE LOWER CONFIDENCE LIMIT CALCULATED.

C VARIA3LES:
C INTEGER:
C REPS= AS ABOVE
C TNiFAIL: AS ABOVE
C NLL5O=,UMBER OF TIMES THE 50 PERCENT LOWER LImIr

C CAPTURES THE RELIABILITY.
C NLLGOPNLL70,NLL8ON|LL9UNLL95,NLLJ9= AS NLL5O

C FOR THE HIGHER LIMITS

C REAL:
C C= DISPLACEMENT PARAMETER

C K: SHAPE PARAMETER
C TIETA= SCALE PARAMETER
C TREL= TRUE RELIABILITY OF THE LYSTEM
C TFAILL TO TFAIL6: TRUE FAILURE VECTORS FOR THE

C COMPONENTS
C FZ(I)qFK(I),FTHETA(I)= FIRST ESTIMATED PARAMETERS

C 3F COMPONENT I
C SC(IJSK(I),STHETA(I)= AS ABOVE BUT SECOND ESTIMATE

C SFAILI TO SFAIL6= SIMULATED COMPONENT FAILURES
C RAK([)=MEDIAN RANK
C RU= VECTOR OF UNIFORM RANDOM NUMBERS

C SRL TO SR6= SIMULATED RELIABILITY OF EACH COMPONENT

C SRS=SI4ULATED RELIABILITY OF SYSTEM
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C FIRST= EXTRAPOLATED VALUE CORRESPONDING To THE
c FIRST MEDIAN RANK( OF 0
C LAST= AS ABOVE BUT LAST MEDIAN RANK OF 1
C SRC=ORDERED RELIABILITY OF EACH COMPONENT WITH
C EXTRAPOLATED END VALUES
C - SRSORD=AS SRC BUT FOR SYSTEM
C CL50 ...... CL99= LOWER CONFIDENCE LIMITS

C
INTEGER REPSTNFArL.NLL5ONLLGONLL70,NLLBO
INTEGER NLL909NLL959NLL99
INTEGER RGE1,NRUMJS
REAL R(6),C(6),K(6 )vTHETA(6RTREL, FC(6)9FK(6)
REAL FTHEIA(6)
REAL TFA!L1(100),TFAIL2(100 ),TFAIL3(100),TFAIL4(100),tFAIL5(100)
REAL TFArL6(100),SFAIL1(100 ),SFAIL2Cj.00gSFAIL3(tOO)geSFAIL,4(1OO)
REAL SFAIL5(100),SFAIL6(100),SC(6),SK(6),STHETA(S),RANK(602)
REAL SRSORD(602), PU(6)
REAL FIRSTLASTSRS(600),SRI(300),3R2(300)
REAL SR3(300) ,5R4(300),5R5(300),SR6(300) ,SRC(6,332)
REAL CL509CL6OpCL70vCL80iCL9O
REAL CL95,CL99
DOUBLE PRECISION DSEED

C DECLARATIONS COMPLETE

C
C INITIALIZE INPUTS AND COUNTERS FOR NUMBER OF TIMES
C LOWER LIMIT EXCEEDED

OSEED=179 43.ODO
PRINT*96L.LoSe OSEED = ,DSEED
ftGE 1:0

REPS: 150
N RU bJS=150
PRrIIT*9# NRUNS 9,NRUNS
T NF AIL=1I0
C(I ):1O.
C(2 )=O.
C(3 )=15*
C(4 )=30.
C (5 )=25.
C(6 )=50.
K (1)=2.3
K (2 )=.8
K(3)=:2.0

K (5 )=1.2
K(G)=29
THETA(i )=200*
THETA( 2)=470*
T HETA(C3 )=18 0.
THETA(4)=120o
THETA(S)=250o
T HETA (6) :150.

60

_ _ _ _ _ __ _ _ _ _ __ -- --



N LL 60=0
4LL70-O
NL 80=0
N LL9~0=0
4 LL 9S=0
4LL9)0

C CALCULATE THE POINT ESTIMATE OF TRUE SYSTEM RELIABILITY
C

CALL RLBTY(CtKTHETAgTRELgRGE1)
C GENERATE THE REQUIRED NUMBER OF MONTE CARLO
C REPETITIONS. FOR EACH RUN DETERMINE IF THE TRUE
C RELIABILITY IS ABOVE THE LOWER LIMIT AT EACH
C CONFIDENCE LEVEL AND INCREMENT THE APPROPRIATE
C COUNTER IF SO.

DO 5 M1,1NRUNS
C
C GENERATE THE TRUE COMPONENT FAILURE DATA FOR EACH
C COMPONENT

CALL WEIBL(DSEEDC( 1),Kc1),THETA(1),TNFAILiPrFAILl)
CALL WEIBL(OSEEDC(2),KC2),THETA(2),TNFAILTFAIL2)
CALL WEIBL(DSEEDCC 3) ,K(3),THETA(3) ,TNFArLTFAIL3)
CALL WEIBL(DSEEDC(4),pK(4),THETA(4),TNFAILTFAILt)
CALL WEIBL(DSEEDC(5)tKCS),THETA(5),TNFAILTFAIL5)
CALL WEIBL(DSEEDC(6),K(6),THETA(6) ,TNFAILPTFAILS)

C SORT THE TRUE FAILURE DATA AND CALCULATE THE
C ESTIMATORS OF THE PAPAMETERS
C

CALL VSRTA(TFAIL19TNFAIL)
CALL VSRTA(TFAIL29"rtFAIL)
CALL VS.RTA(TFAIL39TtNFAIL)
CALL VSRTA(TFAIL4,TNFALL)
ZALL VS.RTA( TFAIL59TNFAIL)
CALL VSRTA(TFAIL6,TNFAIL)
CALL PARAM(TNFAILTFAIL1,FC(1),FK(I ).FTHETA(I))
CALL PARAM(TNFAILTFAIL2,FC(2),FK(2) ,FTHETA(2))
CALL PARAM( TNFAILTFAIL3,FC(3),FK(3),FTHETA(3))
CALL PARAM(TNFAILTFAIL4,FC(4),FK(4) ,FTHETA(4))
CALL PARAM(TNFAILTFAIL5,FC(5),FK(5),FTHETA(5))
CALL PARAM(TNFAILgTFAIL6,FC(6)gFK(6) ,FTHETA(6))

C F3R TIE EmPIRICAL DISTRIBUTION, GENERATE REPS
C RELIABILITY ESTIMATES.
C FIRST GENERATE TNFAIL SIMULATED FAILURES FOR EACH
C OF THE COMPONENTS USIG THE
C ESTIMATES OF THE PARAMETERS

DO 10 L=19REPS
CALL UEIBL(DSEEDFC(1),FK(1),PFTHETA(1),TNFAILSFAILl)
CALL WEIBL(DSEEDPFC (2),FK(2),FTHETA(2),PTNFAILSFAIL2)
CALL WEIBL(DSEEDFCC3),FK(3),FTHETA(3) ,TNFAILSFAIL3)
'-ALL WEIBL(DSEEDFC (4),FK(4 ) FTHETAC4 ),TNFArLSFAIL?4)
CALL WEIBL(DSEEDFC (5) ,FK(5),FTHETA(5),TNFAILSFAIL5)
CALL UEIBL(DSEEDFC C6hFK(6),FTHETA(6),TNFAILSFAIL6)

C ORDER THE SIMULATED FAILURES AND USE THEM TO OBT4INI C THE SECOND ESTIMATE OF THE COMPONENT PARAMETERS
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CALL VSRTA(SFAIL19TNFAIL)
CALL VSRTA(SFAIL2,VNFAIL)
CALL VSRTACSFAIL3,TNFAIL)
CALL VSRTA(SFA IL4,T NFAIL)
CALL VSRTA(SFAIL5,TNFAIL)
CALL VSRTA(SFAILSTNFAIL)
CALL PARAM(TNFAILgSFAIL1 ,SC(I),SK(I),STHETA(l))
CALL PARAM(TNFAILSFAIL2,SC(2),SK(2),STHETA(2))
CAL L PARA M( TNFAILSFAIL3,9SC ( 3) 9 SK(3),S1HETA( 3))
CALL PARAM( TNFAILSFAIL4,oSC(4),SK(4),STHETA(J))
CALL PARAM(TNFAILSFAIL5,SC(5),SK(5),STHETA(5))
CALL PARAM(TNFAILPSFAIL5,pSC(6),SK(6),STHETA(6))

C CALCULATE THE RELIABILITY OF EACH COMPONENT
C US1'JG THE SECOND ESTIMATE OF COMPONENT PARAMETERS
C TO BUILD THE COMPONENT RELIABILITY VECTORS SRI TO SRS
C

SRI CL)=RELY CSC(1) ,SKC1) ,STHETAC1) ,RGEl)
SR2(L)=RELY(SC(2),SKC2),STHETA(2),RGEI)
SRt3(L)=RELY(SCC3),SK(3),STHETA(3),RGE1)
SR4 CL)=RELY(SC(4) ,SKC4) ,STHETA(#) ,RGE1)
SRS(L)=RELY(SC(5),SKC5),STHETA(5) ,RGEI)
SR6 (L):RELY(SC(6),SK(6) ,STHETA(6) ,QGE1)

10 CO'4TINUE
C
C ESTABLISH IELIABILITY DISTRIBUTION FUNCTIONS FOR
C EACH COMPONENT TYPE USING ORDERED MEDIAN RANKS:
C ONE RANK VECTOR A40 THE SIX RELIABILITY DISTRIBUT134
C VECTOiS WILL MAKE UP THE SIX DISTRIBUTION FUNCT104IS
C EACH WITH REPS+2 VALUES
C

RAN K C )=0.
-RANK(REPS.2)=1.

00 15 I:19REPS
IRAIKCI.1)=CREALCI)-e3)/CREAL(REPS)*.4)

15 C34TINUE
C ORDER THE RELIABILITY VECTORS AND ESTABLISH THE VALJ--s
C CORRESPONDING TO MEDIAN RANKS 0 AND 1
C

CALL VSRTA(SRIREPS)
CALL VSRTA(SR29REPS)
CALL VSRTASR3,REPS )

A-'.L VSRTA(SR4,RtEPS )
CALL VSRTA(SR5,IREPS)
CALL VSRTA(SR6,REPS)
CAL.L EXTRA(SR1,RANKFIRSTPLASTREPS)
SR: Cl ,1)=FIRST
SRC (1 REPS*2)=LAST
CALL EXTRA( SR2, RANK,9FIRSTLASTREPS)
SRC (2,1 )=FIRST
SRC C2,REPS+2)=LAST
CALL EXTRA(SR3,RArNKFIRSTLASTREPS)
SRC (3,1 )=FIRST
SR.(3,REPS.2)LAST
CALL EXTRA(SRftRANKFIRSTqLASTREPS)I SRC (4,1 ):FIRST
SR. (4,REPSe-2)=LAST
CALL EXTRA(SR5,RANK ,FIRSTLASTREPS)
SRC (5,1 )=FIPST
SAC (SREPS+2)=LAST
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CALL EXTRA(SR6,PRANt(,FIRSTLASTgREPS)
SRC (6,1 )FIRST
SRC (G,REPS*2)=LAST
DO 20 1,1REPS

SRC (2,I1.1 )=SR2(I )
SRC (3,1+1 )=R3(I)
SRC ( 4,1*1 )=SR4(I1)
S'R: ( 5,1#1 )=SR5(I )
SRC (6,1.1~ )=SR6(I )

20 CO4TINUE
C RAN004LY SELECT A RELIABILITY FROM EACH RELIABILITY
C DISTRIBUTION FUNCTION USING A UNIFORM(0,1) GENERAroi
C TO OBTAIN A MEDIAN RANK, AND LINEAR INTERPOLATIDN.
C CALCULATE SIMULATED SYSTEM RELIABILITY SRS. REPEAT
C 600 TIMES*
c

DO 25 1=1,600
CALL GGUBS(DSEED,69RU)
DO 30 J=196

35 IF(II.LEeREPS*2)THEN
IF(RU(J).LE.RANK(II) )THEN
CALL INTERPCRANK(II),RANK(11-1),SRC(JIl),SRC(JII-1),

lftU( J) 91R (J))
I I=AEPS*3
ELSE
i1:11.1
E4D IF

GO TO 35
END IF

30 CONTINUE
SRS(I):RC1J.(((R(2).R(3)-R(2).Rt(3))*R(4)),(R(5)4Rt(6)

25 C04TINUE
C
C ORDER THE SYSTEM (600) RELIABILITY ESTIMATES USING
C MEDIA4 RANKS AND DETERMINE THE 99,o95,90,80,70,60,50
CPERCENT LOWER LIMITS. NOTE IF EACH CONTAINS THE TRUE

C SYSTE4 RELIABILITY AND IF SO, INCREMENT THE APPROPR1ATE
C COUNTER 4LL5O,...NLL999

CALL VSRTA(SRSip600)
RANK( 1)0.

RAN K(60 2) 1.
DO 40 I19,600
RAIIK(I+1)=(REAL(I )-.3)/600.4

40 COMTINUE
CALL EXTRA( SRS9 RANK ,FIRSTtLAST 9600)
SRSORD(1)=FIRST
SRSORD(602)=LAST
DO 45 1=1,600

SRSORD(I+1)SRS(I )
45 CONTINUE
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CALL INTERP(RANK(8) ,RANK( 7) ,SRSORO(8) ,SRSORD(7),p
1.01 ,CL99)
CALL INTERP(RANK(32 ),RANK(31),SRSORD(32),SRSORD)(31),

1.05 ,CL95)
CALL INTERP(RANK(62),RANKC61),SRSORD(62),SRSORD(S1).
1 *1, CL 90)
CALL INTERP(RANK(122),RANK( 121) ,SRSORD(122),SRSORO( 121),

1. 2,CLaD )
CALL INTERP(RANK(182),RANK( 181),SRSORO(182),SRSORD(181),
1.3tCL70)
CALL INTERP(RA4K(242) ,RANK(241) gSRS0R0C242),SRSORD(241),

1.4, CL60)
CALL INTERP(RANK(302) ,RANK(301) ,SRSORD(302),SRSORD( 301),
1. 59CLSO)
IF( CL99oLT*TREL)NLL39=.NLL99+1
IF( CL95oLToTREL)NLL95=NLL95+1
IFI CL90oLT.TREL)NLL90=NLL9O.1
IF( CL0o.LTeTREL)NLLaO:?JLL8O.1
IF( CL7o.LT.TREL)RLLIO:ALLTO,
IF( CL0o.LT.TREL)NLL60=NLL60+I
IFC CL50oLT.TREL)NLL50=NLL5O.1

5 CO4TINUE
C PRINT THE NUMBER OF TIMES THE TRUE RELIABILITY
C WAS OVER EACH CONFIDENCE LIMIT

PRINT.,' TRUE RELIABILITY IS 0,TREL
PRI'JT*,'NUMBER OF FAILURES 9,T NFAIL
PRINT.,' NUMBER OF REPETITIONS 99REPS
PRINT.,'NU4BER OF TIMES RELIABILITY GE I 119RGEI
PiIqT.,' NUMBER ABOVE 50 PERCENT LOWER LIMIT ','dLL5O
PRINT*,' NUMBER ABOVE 60 PERCENT LOWER LIMIT 99MLLGO
PRINT',' NUMBER ABOVE 10 PERCENT LOWER LIMIT 0,4LL70
PRINT.,' NUMBER ABOVE 80 PERCENT LOWER LIMIT 9,NLL80
PRINT.,'t NUMBER ABOVE 90 PERCENT LOWER LIMIT 094LL90
PRINT*,' NUMBER ABOVE 95 PERCENT LOWER LIMIT 994LL95
PRINT*,' NUMBER ABOVE 99 PERCENT LOWER LIMIT 9,NLL99
ST iP
ENO)

SUBROUTINE EXTRA( X9,YFI RSTLAST9REPS)
C USES LINEAR INTERPOLATION OFF THE TWO END
C VALUES TO OBTAIN THE RELIABILITIES CORRESPONDING
C TO TH-r 'EDIA4 PRKS 0 AND 1, FIRST AND LAST.
C SLOPE IS THE SLOPE OF THE LINEAR LINE BETWEEN TiE
C TWO E'd0 VALUES AT EACH END.

INTEGER REPS
REAL X(300) ,YC302)9FIRST9LAST

* ZZ:X(RE-PS)-X(REPS-1)
V:V C3)-Y(2)
VV:V(REPS+1 )-Y(REPS)
IF( Z.GTo0.)THEN

SLOPE=V/Z
IF(SLOPEsEO.0e*)T HEN

FIR ST=X( 1)
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ELSE
FIRST=X(1)-Y( 2)/SLOPE

END IF
E LS E

FIRST=X(l)
END IF
IF( ZZoG1.O. )THEN

SLOPE=VV/ZZ
IF(SLOPEoEQ.o. )THEN'

I AS =X (RE PS )
ELSE

LAS1:X(REPS).((1-YCREPS.1) )/SLOPE)
END IF

ELSE
LAST=X(REPS)

END IF
IF(FIRST9LT.O.)FIRST=O.
IF(LASToGT.1. )LAST=1.
RETURN
END

SU3ROUTINE INTERP(UPPERYLOWERYUPPERRLOWERRMEDR3
C USES LINEAR INTERPOLATION TO OBTAIN A RELIABILITY
C Re CORRESPONDING TO THE MEDIAN HANK, flED. MED IS
C BRACKETED BY MEDIAN RANKS UPPERY AND LOWERY WHICH
C CORRESPOND TO RELIABILITIES UPPERR AND LOUERR*

REAL UPPERYLOWERTUPPERRLOUERRRSLOPENED
X=UtPPERR-LOUERR
Y =UPPERY-LOWERY
I F( X oGT*O o) THEN

SLOPE=Y/X
R=L0WERf+( (MED-I OWERY)/SLOPE) 1

ELSE
R=UPPERR

EN) IF
I F( R.oGT *I.*)fRUPPER
RETURN
END

1*** *k**** **&* ***a*** *
SU3ROUTI14E WEIBLCDSEEDCoKTHETANWRU)

C CALCU.ATES RANDOM 3-PARAMETER WEIBULL VARIATES
C RU. A TOTAL OF NW ARE FOUND USING IMSL ROUTINE
C GGWIB

4c c Cs ISHE POSITION PARAMETER, K IS THE SHAPE, AND
C THETA IS THE ZCALEo

INTEGER NW
REAL RW(300),CKTHETA
DOUBLE PRECISION DSEED
CALL GGUIB(DSEEDKFJURW)
00 3 I=1,NU
RW( I)=THETA*RV(I)+C

3 CON4TI NUE

RETURNI - EN3 6

J --65



SUBROUTINE RLBTY(C9K9THETARtS9RGE13
C CALCU..ATES SYSTEM RELIABILITY FROM COMPONENT
C PARAMETER DATA.
C R(6) IS THE COMPONENT FELIABILITIES; RS IS THE SYSTEM.

REAL C(6)9K(6),THETA(6)vR(6)9RS
INTEGER RGEl

C CALCULATE COMPONENT RELIABILITIES
DO 10 1l1,Es
R (I )=RELY (C (I) ,K(I) ,THETAUJ ,RGE1)

10 COM TINYUE
C CALCULATE SYSTEM RELIABILITY

RETURN
E ND

FU4CTION RELY(CI(,THETAjtGEl)
C CALCLLATES COMPONENT RELIABILITY FOR 3-PARAMETER WEIULL

REM CIcTHETA9r
INTEGER RGE1
T4100.
x _-y-C
IF(X*LE.O.)THEN

gELY=1.
RGE1=RGE 1.1

ELS E
X (CT-C) /THETA)**KI
IF(XeLTo20.)THE4.

RErLY=EXP(-X)
ELSE

RELY=O.
END IF

E"'D IF
RETURN
EN)
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APPENDIX B. Parameter Estimation Routines

SUBROUTINE PARAM(NUMFAILCWKUwTHETAU)

C "AXI,4Uq SAMPLE SIZE DIMENSIONED=10O
C INPUT

C NUM"SAMPLE SIZE
C FAIL=VECTOR OF SAMPLE DATA
C OUTDUTS
C ESTIMATES OF LOCATION PARAMETER CW SHAPE PARAMETER
C KW A'JD SCALE PARAMETER THETAW
C VARIA3LES:

C INTEGER
C NUM=SAMPLE SIZE
C MIN=MINIMUM SQUARE ERROR
C FLAG IS A FLAG TO MARK THE MINIMUM ERROR
C REAL
C FAIL-VECTOR OF SAMPLE DATA
C RANK=VECTOR OF MEDIAN RANKS

C PLOTRK=PLOTTING RANK = LN(LN(I-1/F(T)))
C EY= V-'CTOR OF EXPECTED Y VALUES IF THE SAMPLES PLOT
C LINEAILY ON A WEIBULL PLOT WITH THE Y AXIS BEING
C THE L4 OF THE FAILURE TIMES AND THE X AXIS THE
C LNLN 3F 1/(l-F(T))
C SQR-RI=VECTOR OF SQUARE ERROR SUMS
C LNFAIL=VECTOR OF LN OF SAMPLE DATA
C CWKWtTHETAW= AS ABOVE
C ECEKvETHETA- ESTIMATES OF PARAMETERS
C TOTALK= THE TOTAL OF THE ABSCISSA VALJES
C TOTALY= THE TOTAL OF THE ORDINATE VALUES

C
INTEGER UUM, FLAG
REAL FAIL(100) RANK(IOO)tPLOTRK(100)tEYCO:10)
REAL SORERR(0:10)LNFAIL(I00)tCWKWTHETAWUMI4
REAL EC(O:1a)tEK(O:1O),ETHETA(O:1O)tTOTALXTOTALf

C DECLARATIONS COPPLETE

C CREATE A MEDIAN RANK VECTOR A4D A PLOTTING LNLN
C VECTOA WITH A TOTAL FOR THE X AXIS

TOTALX=O.
DO 10 t=1tNUM
R ANK(I)=(I-e3)/(NUM*°)
PLOTRK(I)=ALOG(ALOG(Il/(I.-RANKI))))

TOTALX=TOTALX PLOTRK(I)
10 CO4TINUE
C
C SET VALUES OF C FROM 0 TO 1ooFAIL(I) AND
C DETER4[4E THE SQUARE ERROR FROM A LINEAR
C PLOT 34 WEIBULL PAPER FOR EACH
C USING THE RELATIONSHIP LN(T)=(I/K)*LNLN(1I1-F(T))
C *LN(T4ETA)
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Z =:PLOTR K( NUM) -PLOT R K
DO 15 J=O,1O
N:'
IFC JoEQolO)THE4

N=2
7=PLOTRK (NUM)-PLOTRK(2)

ENO IF

00 20 I=N,NUM
LNFAIL( I)=ALOG(FAILCI )-EC(J))

20 C04TINUE
C FIND THE RELATIONSHIP THAT IS CLOSEST TO LINEAR
C AND USE THE PARAMETERS FOR THAT MATCH
C FIRST ESTIMATE K, THE4 THETA ASSUMING THAT
C I/K IS THE SLOPE OF THE LINE

EKC J)Z/C LNFAILCNVUt)-LNFAILCN))
TOT ALY=G.
00 23 I=NNU14
TOT ALY=TOTALY+LN4FAILCI)

25 COMTINUE
Eli ElAC J) (T0TALY-TOTALX/EK CJ) )/iREAL (NUM-N.1)

C CALCUL.ATE THE ESTIMATES OF LN(T-C) WHICH IS THE ORDIMArE.
C ESTIMATE THE ERROR SQUARED

SQRElRCJV=O.
00 30 I=N9NUM
EY(I)=PLOTRK(I)EKJ).uTr4ETA(J)
SOAtEORRJ)=SORERR(J).CEYCI)-LNFAILCl) )eCEYdI)-LNFAIL(I))

30 C 0'4T INUE
15 CONTINUE
C FIND THE CLOSEST L14EAR RELATIONSHIP AND USE THE
C PARAMETERS AS THE ESTIMATES

F LA G:0
MIIN=SQRERR( 0)
00 35 1=1910
IFC SQREiRR(I)eLT*MIN)THEN

MIN=SQR[Rit(I)
FLAG=!

EIND IF
35 C04TINUE

CW=:EC(CFLAG)
KW=:EKCF LAG)
THETAhI:EXP(ETHETA (FLAG))
RETURN
ENO
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SU3ROUTINE PARAMCNUM9FAILqCWvKWTHETAW)
C MAXIMUI SAMPLE SIZE DIMENSIGNED=100
C INPUT
C NUM=SAMPLE SIZE
C FAIL=VECTOR OF SAMPLE DATA
C OUTPUTS
C ESTIMATES OF LOCATION PARAMETER CU, SHAPE PARAMETER
C KW, A'40 SCALE PARAMETER THETAW
C VARIA3LES:
C INTEGER
C NUM=SA'IPLE SIZE
C 'EAL
'C FAIL=VECTOR OF SAMPLE DATA
C RAAK=VECTOR OF MEDIAN RANKS
C PLOT3(=PLOTTIN4G RANK= LN(LN(1-1/F(T)))
C LNFAIL=VECTOR OF LN OF SAMPLE DATA
C CVKWTHETAU- AS ABOVE
C TOTALX= THE TOTAL OF THE ABSCISSA VALUES
C TOTALY= THE TOTAL OF THE ORDINATE VALUES

C
IN4TEGER NUM
REAL FAIL(100) ,RANK((100 ),PLOTRK(1O03)
REAL SLOPELNFAIL(la'j,,CUKUTHETAWTOTALXTOTALY

C DECLA~tATTINS COMPLETE

C ClEAT7 A MEDIAN RANK( VECTOR A'JD A PLOTTING LNLN
C VECTOA WITH A TOTAL FOR THE X AXIS

TOT ALX=C.
DO 10 I=1,NU4

TOT ALX=TOTALX+PLOTAKC 1)
10 CO4TIN4UE
C ESTIMATE C 81 LINEAl EXTRAPOLATION FROM THE FIRST
C TWO ')1DER STATISTICS

C CALI.LATE THE LOG OF THE FAILURE TIMES MINUS C
C AND TIE TOTAL FOR THE Y AXIS

TOT ALY:0.
DO 25 I1;NUM

LNFAIL(I)=ALOG(FAIL (l)-CW)
TOT ALY=TOTALY+LNFAIL( I)
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C CALCULATE K( BY THE AVERAGE SLOPE INVERTED
C DETE4MI'4E THlE SUP9 CF ALL THE SLOPES AND THE AVERAGE
C INVERTED

SLOPE=O.
DO 20 f1=29NUM
SLOPE:SLOPE.(LNFAIL(M)-LNFAIL(M..1I,(PLOTRK(M).PLOTRK(Ml))

20 CONTINUE
KUW CRfAL(NUM)-1.)IS LOPE

C LN(THETA) IS A CONSTANT WHICH IS INCLUDED IN THE
C THE RE-AT104SHIP LK(T)=I/K*LNLPE(1/(l-F(TJ
C +LN(TH:ETA). 1.4 THE CALCULATIONS OF THE TOTALS
C IT IS INCLUDED NUIM TIMES, SO THE AVERAGE VALUE
C WILL E3UAL LN(THETA)

THE TAW= (TOTAL Y-TO TALX/KW)/REAL(NUNq)
THETA W=EXP( TIErAW)
RETURN
EN3
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SU3ROUTINE PARAM( NUMFAIL*CUKWTHETAW)
C MAXIMUI SAMPLE SIZE DIMENSIONED=100
C INPUT
C tUM=SMPLE SIZE
C FAIL=WECTOR OF SAMPLE DATA
C OUTPUTS
C ESTIMATES OF LOCATION PARAMETER CU, SHAPE PARAMETER
C KU, A40D SCALE PARAMETER THETAW
C VARIABLES:
C INTEGER
C ?UM=SAMPLE S17E
C REAL
C FAIL=WECTOR OF SAmPLE DATA
C RANK=VECTOR OF MED!AN RANKS
C FAILMC FAILURE TIMES MINUS C
C LNF4I-=VECTOR OF Lh OF SAMPLE DATA
C CUKUTHETAU= AS ABOVE
C SUMI=JUM*SUM OF FAILURE TIMES**K *LN(FAILURE T!MES)
C SUM2=SUM OF FAILURE TIMES**K
C TOTALX=SUM OF LW(AILURE TIMES)
C SUMO=SUM1/SUM2 -TOTALX

C
INTEGER NM
REAL FAILMC(100),SUM1,SUM2,SUMO
REAL FAIL(IOO),RANK(2)
REAL LNFAIL(1OC),CUKUEK.THETAW.TOTALX.X

C DECLAIATIONS COMPLETE

C
DI 10 1=1,2

10 CO0dTINIJE
C ESTIMATE C BY LINEAR EXTRAPOLATION F':.M THE FIRST
C TWO OADER STATISTICS

CW=FAIL(23-(FAIL(2)-FAIL(1))*RA#JK(2)/(RANK(2)-RANK(l))
C CAL' U-.ATE THE LOG OF THIE FAILURE TIMES MINUS C
C AND TIE TOTAL LOG OF THE FAILURES MINJS C

TOT ALX=o.
DO 15 1=19NUM4
FAI LMC(I)=FAIL(I )-CU.1 LNFAIL( I3=ALOG(FAILMC(I))
Tor ALX=TOTALX*LNFAIL (I)

15 CO04TINUE
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C CALCULATE K BY AN ITERATIVE TECHNIQUE OF MAXIMUR
C LIKELIHOOD.

EIC:2.
90 IF(ABSCKW1-EK).LY..00001)GO TO 830

SU42=Oo
DO 20 I=1,NUM
X=FAILMC( I)**KU
SUMI:SUMI.LNFAIL(I)*X
S U4 2 =SU.'t2 +X

20 C34TINUE
SUMO=( (SUMi *REAL(NUM) )/SUM2)-TOTALX
EK=REAL (NUM)/SUMO
K W= ( 2 *EK +K WI3.
GO TO 90

C CALCULATE THETA USING THE VALUE OF K
C AND THE SUMS DETERMI4ED
80 THETAW:(SUNZIREAL(NUM, 3..(1.1KW)

RETURN
Ed D
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PROGRA'4 PARAM
C INPUT
C N=SAM LE SIZE (BEFORE CENSORING), N=103 OR LESS AS
C DIMENSIONED
C SSI=O IF SCALE PARAMETER THETA IS KNOWN
C SSI=l IF THETA IS TO BE ESTIMATED
C SS2=0 IF SHAPE PARAMETER K IS KNOWN
C SS2=1 IF K IS TO BE ESTIMATED
C SS3=0 IF LOCATION PARAMETER C IS KNOWN
C SS3=1 IF C IS TO BE ESTIMATED
C T(I)=I'TH ORDER STATISTIC OF SAMPLE (1=19N)
C M:NUM3ER OF OBSERVATIONS REMAINING AFTER CENSORING
C N-M FROM ABOVE
C C(1):INITIAL ESTIMATE OR KNOWN VALUE OF C
C THETA(1)=INITIAL ESTIMATE OR KNOWN VALUE OF THETA
C EK(l)=INITIAL ESTIMATE OR KNOWN VALUE OF K
C MR=NLJMFER OF OBSERVATIONS CENSORED FROM BELOW,
C NORMALLY U INITIALLY
C
C OUTOUT
C N SS1, SS2,SS3MC(1),THETA(1)tEK(I),MR
C -- SAME AS FOR INPUT
C C(J)=ESTIMATE AFTER J-1 ITERATIONS
C (OR KNOWN VALUE OF C)
C THETA(J):ESTIMATE AFTER J-1 ITERATIONS
C (OR KNOWN VALUE OF THETA)
C EK(J):ESTIMATE AFTER J-1 ITERATIONS
C (OR KNOWN VALUE OF K)
C MAXIMJM VALUE OF J DIMENSIONED IS 550
C EL=NATURAL LOG OF LIKELIHOOD FOR C(J), THETA(J), EK(J)
C REFERZECE
C HARTER, H.LECN AND A.H.MOORE. MAXIMUM LIKELIHOOd
C ESTIMATORS OF THE PARAMETERS OF GAMMA AND WEIBULL
C POPULATIONS FROM C0MPLETE AND FROM CE4SORED SAMPLES
C TECHNJMETRICS9 7(1965)

DIMENSION T(100)tC(550),THETA(550) ,EK(550),X(56),V(55)
$31=1.
SS2=1.
SS3=1.

4=1 0

THETA(l)=l.
C (1.):O.

EK( 1)=1.
14t: 0
r( )=146.96
T (2):162.52
T(3=)175*64
T (4)=220e447
r(5)=223,9
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r (9 )=33 4,266
T (9 )=3509 70
1(1 0)=359.14
IF(N)669669104

104 EN=M
IF(1l)66966911O

110 E M= i
31 ELNM=0.

E MRt =MR
MRP ?4R+ I

33 NMIW-m+ I
0O 34 I=NMN
E I =

34 EL'I4ELN4ALOG(EI)
IFU4R)66935974

74 00 75 I11MR
El:!

75 EL4M=ELNM-ALOG(EI)
35 00 33I J=19550

IFCJ-1)66925937
37 JJ=J-J

SK=Oo
SI: 0.
DO 6 l:MRPVM

6 SK=SK.(T(I)-C(JJ))**EKCJJ)
IF( SS1)7,7,8

7 THETA(J)=THETA(JJ)
GO TO 9

8 IF(MR)66,19iP20
19 rHETA(J)=((SK.(EJ-E') *( T()-C (JJ) )**EK(JJ) /E'q)

1**( l./EK(JJ))
GO TO 9

20 X(I)=THETA(JJ)
LS=O
00 21 L=1955
LL=L-1

- LP=L.1
X (LP)=X(L)
ZRI(( T (IRPJ-C(JJ) )/X(L) ) 'EK(JJ)

1,E((JJ)*(E4-EM)*(T(m)-C(JJJJ*EK(JJ)/X(L)**(EXKJJ)41.)
I-EMR.EK(JJ).ZRK.EXP(-ZRK)/(X(L)*(1.-EXP(-ZRX)))
IF(Y(L))5397.3954

53 LS=LS-1
IF(LS+L)56,5595S

54 LS=L3+1
IF( LS-L)58956958

1515 X(LP)=.5&X(L)
GO TO 61

56 X(LP):1.5ftX(L)
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GO TO 61
58 IF(Y(L)*Y(LL))609739!59
59 LL=LL-1

GO TO 58
60 X(LV)=X(L).Y(L).(X(L)-X(LL) )/(Y(LL)-Y(L))
61 IFC ABS( X(LP)-X(L ))-1.E-4373, 73,21
21 CONTINUE
13 THETA(J)=X(LP)
9 EX(J)=EX(JJ)
10 IF(SS2)12912911
11 00 17 I:I4RP94
17 SL=SL+ALOG(TCI)-CCJJ)

XCI )=EK(J)
LS=O
00 51 L=1955
S LiC 0
00 is I=MRPIi

18 SLK=SLIC.(AL0G(TCI )-C(JJ))-AL0G(THETA(J)))*(T(I)-C(JJ))
1e**XCL)
LL=L-1
LP L. 1
K (LP)=X(L)
ZRJC.CCT(MRP)-C(JJ))/THETACJ) )*.KCL)
Y(L)=(Et-EiR)*d1/XCL)-ALOGCTHETA(J))).SL-SLK/THETACJJ
l..XCL)4(EN-EMq)*(ALOG(THETA(J))-ALOG(T(M)-C(JJ)))((q)
I-C(JJ))arX(L)/THETA(J)aaXCL)*EMRbZRK*(ALOGCZRK)/XCL))
1rEXP(-ZRK)/I.-EXP(-ZRK))
IF( Y(L) )43,95244

113 LS=LS-1
IF(LS+L)47v45,47

44 LS=LS,1
IF(LS-L)47946947

45 XC(LP)=.5.X(L)
GO TO 50

46 XCLP)=1.5*X(L)
GO TO 50

47 IFC Y(L)*YCLL) )4c25?te#8
48 LL=LL-1

so ro 4y
49 XCLP)=XCL).Y(L)'CXCL)-X(LL))ICY(LL)-Y(L))
50 IFC ABS(XCLP)-X(L))-leE-4)52,52951
51 CO'4TINUE
52 EK(J)=XCLP)
12 C(J):CCJJ)
62 1F(SS3125925914
14 IFCI.-EK(J))16978978
78 [F(SS1.SS2)57957,1I6
16 X(l):C(J)

LS=O0
D0 23 L=1955
SKI :Q
SR=O
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- 00 15 IzmRPPm
SKI =SK1*(1(I)-X(L)) *eCEK(J)-1.)

LL=L-1
LP=L.1
X (LP) =X (L)
ZRiC((T(MRP)-X(L))/THETA(J))..EK(J)
V (L J:(1.-EK(J)).SR4EK(J)*(SKI(EN-E4) (T(14)-X(L))

I F( Y(L ))39924 910
39 LS=LS-l

I F( L3 7 0,v41 910
40 LS=LS.1

1 F( LS-L) 709 42 970
41 X(P=5XL

GO TO 22
42 X(LP)=o5*X(L)+.5*T(lH

Go TO 22
70 IF( Y(L)*Y(LL))72q24v71
11 LL=LL-1

GO To 70
72 xLP:=x(L'Y(L) (X(L)-X(LL) )/(Y(LL)-Y(L))
22 IF( ABS(X(LP)-X(L))-1.E-4#)24924,23
'23 C04TI-NUE
24 C(J)=X(LP)

Go TO 25
'57 C(J)=T(1)
25 IF( 4R 66s 38 i&9
38 30 63 1=109M

IF( C(J).1.E-4T(I)) 68,67,67
67 MP=MR.1
63 C(I=T(1)
68 IF(P4U66969,31
6l9 SK=tJ.

SL: 0.
D0 36 I=MRPgM
SK=SK*(T(I)-C(J)J*&EK(J)

36 SL= SL +ALOG( T( 1)-C (J ))

EL=ELN.4.(EM-EMR).(ALJG(EK(J))-EK(J) eALOG(THETA(J) J )s

1(J)*bEK(J)).EMR.ALOG(l.-EXP(-ZRK))
I FC J- 3) 30,92 7,27

27 [F( ABS(C(J)-C(JJ) )-1.E-4)23,28,30
28 IF( AOS(THETA(J)-rT1ETA(JJ))-1.E-4)29929930
29 IF(ABS(EK(J)-EK(JJ)')-l.E-4366966930
30 C0NITINUE

66 STIP
66 E-70

76



APPENDIX C Derivation of Maximum Likelihood Equations

The two-parameter Weibull distribution function is
kt k - 1

f(t;e,k) exp -)k

Assuming a random sample of n independent failures T1 , T2, ... Tn t

the likelihood function is
k-i

L(e,k) T k -- exp

The natural logarithm of the likelihood function can be used to find

the maximum likelihood since the maximum point will be the same for both

the logarithm and the function. The random samples can be considered

constants for the likelihood function. If the partial derivatives of the

logarithm of the likelihood function are taken with respect to each of

the two parameters and set equal to zero, the two equations can be solved

for the two unknown parameters by first solving for e in terms of k, then

substituting and solving for k.

in L = ktln - 1 exp[-( 
t -i )  ]

k
i l[in k + (k-i) ln ti - k ln e -

k

= n(ln k - k in e) + n~ [(k-1) In t i -

ain L nk k n k
- - R- nkEk tk set equal to zero

nk k n k0 --- + e-+1 iZl t

k I 'k

n
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APPENDIX D Component Failure Data - Time To Failure

Component 1

139 146 162 175 220 233 261 290

308 329 .554 3535 350 359 463

Component 2

113 216 246 252 296 326 415 431

444 480 529 535 661 664 995

Component 3

165 174 272 289 305 348 353 371

384 462 463 508 510 518 570

Component 4

92 99 142 150 151 152 160 167

182 187 200 201 211 214 216

Component 5

160 186 200 204 206 213 259 261

265 287 298 304 326 327 438

Component 6

107 ill 142 162 189 212 231 233

266 274 306 369 498 509 719
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